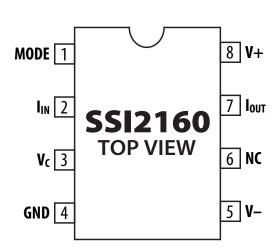
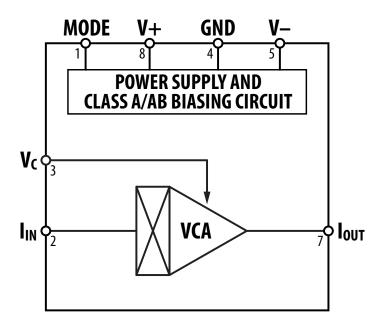
SSI2160

PROCIRCUIT™ VOLTAGE CONTROLLED AMPLIFIER

The SSI2160 is a budget single-channel VCA building block for high-performance audio applications. Voltage control of current-mode inputs and outputs allow an exponential gain range of +20dB to -100dB, with control provided by a ground-referenced -33mV/dB constant.


The device offers considerable flexibility for a wide range of design goals and applications. A unique mode control allows selection of Class A, Class AB, or in-between using a single resistor. The SSI2160 can be used as a high-quality building block for a variety of applications such as dynamic range processors, voltage controlled filters, exponential generators, and antilog converters.

The SSI2160 will operate on supplies as low as +8V for battery-powered devices such as guitar pedals, or up to $\pm18V$ in systems where maximum headroom is desired.


The SSI2160 is part of a family of affordable high-performance VCA's from Sound Semiconductor. The SSI2162 offers two channels with a small PCB footprint, the single-channel SSI2161 provides lowest noise, and the SSI2164 Quad VCA has become the industry-standard workhorse in countless applications.

FEATURES

- Pro-Grade Exponential VCA for the Most Cost-Sensitive Applications
- High Input Current Handling 1mA
- Pin-Selectable Class A or AB Operation
- 118dB Dynamic Range (Class AB)
- Low Distortion Typical 0.025% (Class A)
- Large Gain Range: -100dB to +20dB
- ±4V to ±18V Operation
- No External Trimming
- Low Control Feedthrough Typical -60dB

PIN CONNECTIONS
8-LEAD SOP

FUNCTIONAL BLOCK DIAGRAM

SPECIFICATIONS ($V_S = \pm 15V$, $V_{IN} = 0.775V_{RMS}$, f = 1kHz, $A_V = 0$ dB, Class AB, $T_A = 25$ °C; using Figure 1 circuit)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
POWER SUPPLY Supply Voltage Range Supply Current Supply Current Power Supply Rejection Ratio	V _S I _S I _S PSRR	Class AB, V_C = GND Class A, V_C = GND, I_M = 1mA 60Hz	±4	±xx ±xx 90	±18 ±xx	V mA mA dB
CONTROL PORTS Input Impedance Gain Constant Gain Constant Temp. Coefficient Control Feedthrough Gain Accuracy Channel-to-Channel Gain Matching Maximum Attenuation Maximum Gain		After 60 seconds of operation $A_V = 0 dB \text{ to } -40 dB$ $A_V = 0 dB$ $A_V = +20 dB$ $A_V = -20 dB$ $A_V = -20 dB$ $A_V = 0 dB$ $A_V = -40 dB$	9	10 -33 -3300 -60 +0.30 -0.20 +0.20 0.07 0.24 -100 +20	11	kΩ mV/dB ppm/°C dB dB dB dB dB dB dB
SIGNAL INPUTS Input Bias Current Input Current Handling	I _B			±10 1		nA mA _P
SIGNAL OUTPUTS Output Offset Current Output Compliance		V _{IN} = GND		±150 ±100		nA mV
PERFORMANCE Output Noise (¹I _M = <1mA) Headroom Total Harmonic Distortion (¹I _M = <1mA)	HR THD	Class AB $(20Hz - 20kHz, unweighted)$ $R_{IN/OUT} = 30k\Omega$ $R_{IN/OUT} = 20k\Omega$ $R_{IN/OUT} = 15k\Omega$ $R_{IN/OUT} = 7.5k\Omega$ Class A $(20Hz - 20kHz, unweighted)^1$ $R_{IN/OUT} = 30k\Omega$ $R_{IN/OUT} = 20k\Omega$ $R_{IN/OUT} = 20k\Omega$ $R_{IN/OUT} = 7.5k\Omega$ 1% THD Class AB $(80kHz BW)$ $A_V = 0dB$ $A_V = 0dB$, $V_{IN} = -17dBu$ $A_V = +20dB$ $A_V = -20dB$ Class A $(80kHz BW)^1$ $A_V = 0dB$ $A_V = 0dB$ $A_V = 0dB$ $A_V = 0dB$ $A_V = -20dB$ $A_V = 0dB$		-93 -96 -98 -101 -81 -84 -87 -92.5 +22 0.05 0.025 0.20 0.045		dBu dBu dBu dBu dBu dBu dBu dBu % %
Channel Separation Unity Gain Bandwidth Slew Rate	SR	$C_F = 10pF$ $C_F = 10pF$		-110 500 700		dB kHz µA/µs

ABSOLUTE MAXIMUM RATINGS

	1	
Supply Voltage	±20V	
Storage Temperature Range	-65°C to +150°C	
Operating Temperature Range	-40°C to +85°C	
Lead Temperature (Soldering, 10 sec)	260°C	
Mode Current (I _M ; Pin 1 to Pin 16 via R _M)	2.0mA	
Control Pin Voltage (Pins 3, 6, 11, 14)	V- to V+	

ORDERING INFORMATION

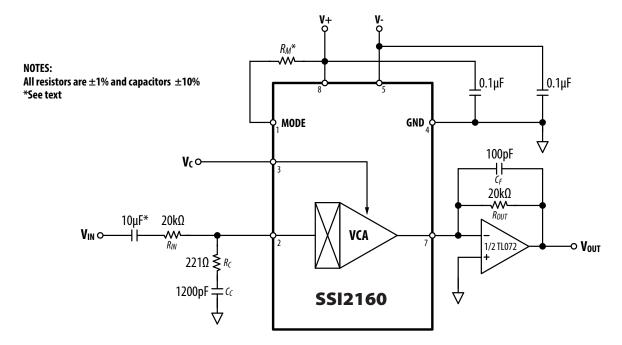
Part Number	Package Type/Container	Quantity	
SSI2160S-TU	8-Lead SOP* - Tube	XX	
SSI2160S-RT	8-Lead SOP* - Tape and Reel	XX	

*SSI Package ID "PSL8", compliant with JEDEC MS-012-AA Mechanical drawing available at www.soundsemiconductor.com

Features and specifications are subject to change without notice. While Sound Semiconductor strives to provide accurate and reliable information, no responsibility is assumed for use of its products, infringement of intellectual property, or other rights of third parties as a result of such use.

PIN DESCRIPTIONS

Pin(s)	Name	Description	
1	MODE	Current into this pin sets VCA core to operate as Class A (lowest THD), AB (lowest noise), or inbetween, set by external resistor. Leave open for Class AB operation.	
2	I _{IN}	Ground-referenced current input; requires RC network.	
3	Vc	Ground-referenced control port with a -33mV-per-dB constant.	
4	GND	Connect to analog signal ground with short, low inductance trace.	
5	V-	Negative supply. Recommend 100nF local decoupling capacitor placed as close to package as possible with a low inductance trace to ground.	
6	NC	Leave this pin unconnected.	
7	louт	Ground-referenced current ouput.	
8	V+	Positive supply. Recommend 100nF local decoupling capacitor placed as close to package as possible with a low inductance trace to ground.	


USING THE SSI2160

The SSI2160 is a single-channel voltage controlled amplifier with a control range from +20dB to -100dB. The VCA is a current-in, current-out device with a separate voltage control port. Basic operation is described below; see the "Principles of Operation" section for further details on inner workings of the device and an application section that follows.

Signal Inputs

Figure 1 shows the basic application circuit for one channel. Resistor R_{IN} converts the input voltage to an current, and a 221 Ω resistor in series with a 1200pF capacitor connected to ground ensures stable operation. The SSI2164 is quite tolerant of RC network selection, but 221 Ω /1200pF has been proven to work well over a wide range of R_{IN} values.

A $20k\Omega$ value for R_{IN} is recommended for most applications, but can range from $7.5k\Omega$ to $100k\Omega$ — lower values will produce the best noise performance at some cost in distortion and headroom.

Figure 1: Typical Application Circuit